

Interference by Nickel(II) Salts and Their 5-Methylimidazole-4-carboxylate Coordination Compounds on the Chloroplast Redox Chain

Beatriz King-Díaz^a, Nórah Barba-Behrens^b, Josefina Montes-Ayala^b,
Silvia E. Castillo-Blum^b, Concepción Escartín-Guzmán^b, Roberto Iglesias-Prieto^c
and Blas Lotina-Hennsen^a

^a Depto de Bioquímica, Facultad de Química Universidad Nacional Autónoma de México.
Ciudad Universitaria. Coyoacán. México D. F. 04510, México

^b Depto de Química Inorgánica, Facultad de Química Universidad Nacional Autónoma de
México. Ciudad Universitaria. Coyoacán. México D. F. 04510, México

^c Estación de Investigaciones Marinas “Puerto Morelos”, ICMYI-UNAM. Apartado Postal
1152, Cancún 77500 Quintana Roo, México

Z. Naturforsch. **53c**, 987–994 (1998); received April 21/June 22, 1998

Coordination Compounds, Photosynthesis, Ni(II), Emizco, Hill Reaction Inhibitors

Nickel(II) salts and their coordination compounds with ethyl 5-methylimidazole-4-carboxylate (emizco), $[\text{Ni}(\text{emizco})_2\text{Cl}_2]$, $[\text{Ni}(\text{emizco})_2\text{Br}_2]$, $[\text{Ni}(\text{emizco})_2(\text{H}_2\text{O})_2](\text{NO}_3)_2\cdot\text{H}_2\text{O}$, $\text{Ni}(\text{NO}_3)_2$, inhibit photosynthetic electron flow (basal, phosphorylating and uncoupled) and ATP-synthesis, therefore behave as Hill reaction inhibitors. Coordination compounds are more potent inhibitors than the salts. It was found that the target for NiCl_2 ; NiBr_2 and $\text{Ni}(\text{NO}_3)_2$ is at the b_6f level. On the other hand, the complexes $[\text{Ni}(\text{Emizco})_2\text{Cl}_2]$, $[\text{Ni}(\text{Emizco})_2\text{Br}_2]$ and $[\text{Ni}(\text{emizco})_2(\text{H}_2\text{O})_2](\text{NO}_3)_2\cdot\text{H}_2\text{O}$ binding sites are located at $Q_B(D1)$ -protein and b_6f level. Therefore, they have a common inhibition site located at b_6f avoiding the PQH_2 oxidation. The Q_B inhibition site was corroborated by variable chlorophyll *a* fluorescence yield $[V(j)]$. The emizco ligand has no activity on photosynthetic electron flow.

Reprint requests to Dr. B. Lotina-Hennsen. Fax: (525)6 225329. E-mail: blas@servidor.unam.mx